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Abstract

Presentations are an important aspect of daily communication in most organiza-

tions. As sketch, and gesture-capable interfaces such as tablets and smart boards

become increasingly common, they open up new possibilities for interacting with

presentations. This thesis explores two new interface prototypes to improve upon

otherwise tedious presentation needs such as demonstrating models based on scalar

functions, and visualization of data. We combine a spreadsheet style interface with

sketching of scalar mathematical functions to develop and demonstrate intuitive

mathematical models without the need of coding or complex equations. We also

explore sketch and gesture based creation of data visualizations.
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Chapter 1

Introduction

1.1 Motivation
Let us begin with a story about Jack and Jill. Jack is a high school physics teacher in

his mid 30’s who works in the Burnaby area. He loves showing students diagrams

of mathematical functions. When he was in school, his teacher drew a cannon

ball and an arc trailing behind it, which was enough to make sense of its projectile

motion. Ever since then he was hooked. These days when he is asked questions,

he would race to the chalk-board to doodle some curves to better answer them.

Zooming across the lower mainland, we find Jill who is a young and successful

project lead at a major accounting firm in Vancouver. During her presentations, she

is also asked questions. Jill’s presentations are often based on data her team has

collected about sales and audits, so she often finds herself describing the numbers,

or if lucky, displaying a chart she had made well in advance just in case she were

asked.

Both Jack and Jill have similar goals: they both need to be able to communicate

some conceptual, numbers-based model in an improvisational setting. In Jack’s

case, the model can be constructed to fit the task at hand, in other words it can be

artificial. In Jill’s case, the model is dictated by the data that exists.

Ten years ago the story would have ended here as most presentation media

back then were more or less static. In other words, you could not interact much

with them. However these days technology such as tablets, smart boards, and other
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novel interfaces like laser pointer input open up new possibilities of interacting in

these settings.

These personae bring me to this thesis. Here, you will be seeing two closely

related, sketch-based interfaces: one for creating and interacting with mathematical

models, and the other for creating visualizations.

Thirty million is a sizable number. It is nearly the population of Canada and it

is larger than the population of many countries in the world. It is also the number

of presentations made each day as estimated by Microsoft...in 2001 [45]. Presen-

tations are likely even more pervasive today. Even if a fraction of this number

represents the improvisations of the Jacks and Jills of the world, this is still an

interesting area that we can improve upon.

Our motivations for this thesis are to help improve everyday improvisations

such as those we have mentioned earlier. Moreover, we aim to support rapidly

emerging technologies in this area, especially those that help people interactively

construct and show mathematical functions, as well as data. These first two moti-

vations work towards the overall aim of one day supporting a workspace-approach

of working in which, rather than having tasks sand-boxed in separate applications,

functionality is available seamlessly in the work-flow. Finally, our last motivation

for this thesis is to simply see if the system could be made.

We can summarize the problem we are approaching in the following question:

“In an improvisational setting, how do we support the rapid authoring of active

diagrams that visually communicate information?”

This question leads to a few domain constraints. First, we need to support an

interaction method that can be easily applied in our domain. For this, we chose

to build upon on-(drag)-off (ODO) interaction; examples of such being sketching,

mousing, single-finger gestures, and the like. As presenters, we are often limited

in how we can interact with presentation visuals when performing in front of a live

audience. At best, we are given an electronic smart board to work with. More typi-

cally we have a means to point at items such as a laser pointer. In the best situations,

these familiar interactions can be adapted to simple stroke, or gesture-like interac-

tions by various means [13, 43]. This makes ODO interactions adaptable to how we

already perform presentations. Fortunately once established, an interface built on

ODO interactions can then be supplemented with other types of interactions, such
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as multi-touch gestures, in order to provide a richer experience.

This does not mean that we will be eliminating the keyboard altogether, as this

mode of interaction is still useful, and is often available in a virtual form [51] in

modern devices. However, because virtual keyboards can be slow and visually

obstructive, we aim to limit their usage.

The next domain constraint imposed is that authoring of any visual artifacts,

such as charts, needs to be fast. In our case, we aim for under a minute, ideally

around thirty seconds. The visuals created do not necessarily need to be polished,

but they do need to be able to illustrate the key ideas the presenter is conveying.

This naturally leads to the next constraint: the interaction with any created

artifact needs to be even faster than authoring. In other words, any visuals created

should be responsive enough to demonstrate in a live setting.

Finally, there is the constraint that the visible interface should be minimal. This

is because graphical user interface elements can be visually distracting to audiences

in the presentation and improvisation setting.

There are two kinds of presentation artifacts, such as slides, that are generally

encountered: passive and active. Passive artifacts stay the same and are used in

scripted situations, such as when marketing a product, giving a talk, and so forth.

These are usually created in advance, never change, and often cannot be changed,

examples being videos or images. These have the benefit of being predictable and

consistent; however, there are times when their immutable nature is a disadvantage.

Whether it is teaching new concepts in classes or demonstrating a new busi-

ness idea, the process still often remains the same: using a series of static visuals

with a minimalist interface in order to avoid distractions and preserve the flow of

information. Yet this flow is often interrupted when the presenter wants to demon-

strate a dynamic concept. An example could be a science teacher demonstrating

the addition of sound waves in class using slides and then having to switch over

to drawing on a black board, or an analyst asked to demonstrate a projection of

data using different parameters than the ones prepared in advance. Being able to

facilitate improvisational examples can be useful in settings such as these, with the

added advantage that anyone sharing the slides can improvise their own examples.

Active artifacts are used in situations that allow or require improvisation, such

as providing examples when answering questions, exploration, and more. Exam-
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Table 1.1: A comparison of various presentation media

Name Interactivity Ease of Construction Programmability

Dry-Erase/Chalk Board low easy none
Linear Slides low easy none

Pre-Recorded Video low easy none
Powerpoint low easy-moderate low

Spreadsheets low easy-moderate low-moderate
Sketch Interfaces low-high easy-moderate moderate

Physics-Based Systems low-high moderate moderate
Custom Web Applications low-high moderate-hard moderate-high

Custom C++ Program low-high hard high
Java Applet Demo low-high hard high

ples of active artifacts can include demonstrating a live computer program proto-

type, using presentation software with a dynamic slide order, showing animations

that respond to equations, or even freezing a banana in liquid nitrogen in front of

a chemistry class. In this thesis, we will refer to any active visual artifact that are

created or interacted with in our interface as ‘actors’.

Table 1.1 compares common categories of presentation media available today.

Each of these vary in terms of interactivity, ease of construction, as well as pro-

grammability. In general, there is often a trade-off between how dynamic some-

thing is, and how difficult it is to construct. On one end for instance, preparing a

set of static slides is relatively easy to make without needing technical knowledge,

however static slides are generally not interactive. On the other end, interactivity

can be achieved by including a Java applet in the presentation to aid in demon-

stration and the sky is the limit as to what can be constructed with this approach.

However, this option is only available to those who have sufficient technical back-

ground.

By combining ideas from sketch interfaces and spreadsheets, this thesis aims

to provide an increased level of interactivity without significantly increasing the

difficulty of authoring active diagrams in the presentation domain. The next two

sections present examples of accomplishing this with our system.
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1.2 A Function Sketching Example
A good compromise between ease of construction and programmability can be

found in the spreadsheet interface. Spreadsheets allow for the creation of math-

ematical models that can be easily updated. They are dynamic; they have a well

established relationship between cells and equations; they do not require coding to

produce interesting results; and they are fast when compared to some other meth-

ods of generating models, such as typing in commands in a declarative program-

ming language.

The process of function sketching is summarized in Figure 1.1. Creating a

model and interacting with it using sketch involves a few steps: the creation of

a spreadsheet actor on the main canvas, sketching functions in them, and linking

these actors with equations.

Interaction with this system begins on a blank canvas. When drawing on the

canvas sketched marks appear either as ink that remains static, like ink on paper;

or form interactive tools called widgets or actors. In function sketching the canvas

actors used are spreadsheet cell actors, where scalar functions can be sketched in.

These actors can be created on the canvas and linked to equations individually, or

the spreadsheet mode can be used as a shortcut to access to many cell actors at

once.

Just like a spreadsheet, mathematical models involving cells can be created

by linking cells with equations. Also, similar to a spreadsheet, any cell update

pushes changes to other cells that are involved in the model. The result is a system

that lets you quickly construct scalar-function based models and alter their inputs.

Practical examples where this is useful include demonstrating the concept of filters

in computer vision classes, showing construction and destruction of waves in an

introduction physics class, drawing different waves to show how they would affect

their resulting Fourier transform, modelling factors that could affect sales data over

time and trying out hypothetical situations to see what they would do, to name a

few. Surprisingly, there are almost no tools to our knowledge that allow any form

of interactive sketching of a scalar functions as a means of exploring models or

processes.
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1.3 A Visualization Sketching Example
In the past, the authoring of visualizations was only available to those with pro-

gramming knowledge. Others were limited to using pre-programmed wizards and

templates. The advent of declarative scripting languages for authoring visualiza-

tions such as Protovis [7], opened up the possibility to provide GUI tools to modify

aspects of visualizations that were previously available to only programmers. The

visualization sketching aspect of this thesis presents an example of a sketch-based

implementation of such a tool. Figure 1.2 summarizes the process of sketch-based

authoring of visualizations.

Sketching visualizations requires the creation and linking of various actors,

each specifying a subset of parameters for the underlying scripting language that

will render the final visualization. This rendering is possible because the language

we use understands that visualizations are collections of drawn marks that are sys-

tematically altered, positioned, and sized based on rules that can be governed by a

small set of parameters [7, 59].

In the example of Figure 1.2 a familiar stacked bar chart is created. However

the method of authoring visualizations in this thesis is not limited to only famil-

iar types of charts. A variety of visualizations, familiar and specialized, can be

constructed, consisting of many types of marks, stacked and positioned in multiple

ways, each being able to respond to changes in the dimension of information that

they are modelling [57].

1.4 Contributions
The contributions of this thesis include: (1) a sketch spreadsheet to construct and

alter functional models, (2) a proof-of-concept WYSIWYG system to author visual-

izations that supports on-(drag)-off interaction, and (3) a working implementation

of both components comprising of over 25k lines of code.

We combine ideas from several well-known interfaces and apply them to two

types of information-based active diagrams. Our first proposition—constructing

scalar function models in spreadsheets—borrows ideas from sketch interfaces, vi-

sual programming languages, and spreadsheets. Specifically, although spread-

sheets have already been augmented to include information besides scalar values in
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their cells, such as visualizations or even entire functions, we propose that sketch-

ing scalar functions in the cells can be a useful input method for construction,

interaction, and improvisation. Our second proposition—constructing WYSIWYG

visualizations with sketch—combines ideas from sketch-based interface construc-

tion, data-flow visual programming languages, and declarative visualization script-

ing languages, and demonstrates that it is possible to more finely construct visual-

izations without coding in contrast to previously available methods. These contri-

butions are presented together in this thesis as they share a great deal in terms of

interaction and applications.

1.5 Organization
The remainder of this thesis is organized as follows. Chapter 2 covers related work.

Our system for sketching functions is detailed in Chapter 3. Visualization sketching

is described in Chapter 4. Finally the conclusions, limitations, and possible future

directions of this thesis are summarized in Chapter 5.
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Figure 1.1: An example of function sketching. The three steps of function
sketching are setting up the scalar function models in the sketch spread-
sheet, setting up the diagram, and interacting with it via sketching new
scalar functions.
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Figure 1.2: An example of visualization sketching. The three steps of func-
tion sketching are drawing the canvas actors, selecting the visual encod-
ing of marks, and combining the marks in a compound visualization.
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Chapter 2

Related Work

This thesis touches upon several areas of related work. Research in presenta-

tions reveal guidelines on how to implement systems for improvisational settings.

Sketch authoring systems look at methods to create content from sketch input.

Visual programming languages provide the means to encode program logic and

information filters using a GUI, and often without requiring the use of a key-

board. Spreadsheets provide a visual layout for information and provide a means to

quickly construct and interact with simple numerical models. Finally, visualization

authoring tools provide the means to map information to visualizations.

In this chapter, we will briefly talk about some of the related areas of research,

and expand on the ideas they contribute towards solving the problem statement

mentioned in Chapter 1.

2.1 Presentation Tools
Presentation tools are designed to systematically show visual information to an

audience and aid in the communication of ideas. They have come a long way from

early technology such as manually drawn or printed visuals, to slide projection, to

the digitized slide shows we commonly see today.

Currently, popular tools such as Microsoft PowerPoint or LibreOffice Impress

are designed to present virtual slides one at a time. Figure 2.1 shows an example

of part of an interface for this kind of software. The advantage of these programs
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Figure 2.1: Part of the user interface seen in today’s presentation software.
This class of software allows one to construct and organize virtual slides
in a sequential order, and transition between them.

over traditional methods of presenting visuals, such as using chalk boards or slide

projection, is that visual artifacts for presentations are easier to create and alter

without having to re-print or re-create them entirely. However, the disadvantage of

using these tools in an improvised setting is that the created visuals are often static,

which makes them difficult to alter during a live presentation.

Additionally, the ability to interact with static visuals such as virtual slides is

often limited. For instance, it would be a cumbersome task to demonstrate to a

physics class how a ball would respond when applying different forces. A series

of prepared animations would need to be made, or for those with programming

knowledge, an application could be created and then embedded into virtual slides.

Typically though, the range of interactions with presentation software is restricted

to transitioning between slides, triggering an embedded multimedia object such as

a video clip, or turning the screen on and off. These generally involve single button

presses.

Pen and gesture interaction, although supported, is often used for making an-

notations or even for drawing static diagrams. This narrow spectrum of uses today
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may be due to the lack of support for this mode of interaction in the presentation

setting. Fortunately, the availability of pen-like interaction in presentations has

been increasing, as evidenced by examples of works that have investigated addi-

tional means of supporting this style of input [13, 43]. Furthermore, in the mar-

ketplace today, software can be purchased that allows portable, gesture-capable

devices such as tablets and smart phones to interact with presentations. Unlike

single button clicks, which can typically be used to trigger events or toggle states,

two-dimensional interactions, such as pen sketching and gestures open the door for

a richer set of interactions with presentation media.

An area that has been explored is the rapid generation and exploration of visual

artifacts. Some sketch-based contributions focused primarily on generating presen-

tations [2, 34]. However these still maintained the traditional slide format, one that

some have argued could use improvement [56]. Other works experimented with

augmenting the traditional slide format to a more free-form canvas with enhance-

ments such as incorporating zoomable user interfaces (ZUI) [6, 21]. An example

of this interface can be seen in Figure 2.2. This idea not only changed the format

of presentations, but enhanced them by adding spatial cues to information in the

presentations. Other research, e.g., [63], added specialized, single-parameter ani-

mations for presentation purposes, and added an element of interactivity to them.

The research also proposed additional guidelines for presentations and their ani-

mations such as building hierarchical slides, adding interactive controllers, doing

one thing at a time, and making all movements meaningful, among other things.

These changes and guidelines helped to bridge the gap between presentations and

sketch authoring systems, albeit with specialized restrictions.

2.2 Sketch Authoring Systems
Sketching is often used in the ideation stage of design due to its speed and ease

[27, 46, 47, 52]. The benefit of using digital sketches is that they can often be

converted into rough, but functional content.

Sketch authoring systems often create content by mapping features of sketched,

digitized ink to parameters used to create other types of digitized artifacts. Often

these artifacts are time consuming to create using other methods, such as graphical
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Figure 2.2: Zoomable user interfaces (ZUI) allow a more flexible placement
of slide show elements. This enhances the presentation overall by intro-
ducing a spatial memory element. (Reproduced with permission from:
[21]).

user interfaces [29], UML diagrams [12], three-dimensional models [3, 4, 61], or

even full animations [55] as seen in Figure 2.3. This approach of mapping features

of sketched curves to parameters provides a quick and natural means of specify-

ing a set of parameters, which would otherwise need to be specified individually

in sequence or inferred by other means. However, there is a trade-off between

speed and precision when specifying parameters by features of sketches, due to

the approximate nature of sketching compared to typing in a set of exact numbers.

Therefore sketch is often seen in situations where the benefits of creating an ap-

proximately correct artifact outweighs the need for precision. There are several

areas of research that build on top of sketch and sketch-like interactions for rapidly

generating content.

Interaction by demonstration is one technique that has been explored in the

past. Parameters are either inferred or specified by demonstrating desired be-

haviour. In some implementations this generally requires desired behaviour to be

preprogrammed and mappable to demonstrated interactions [38, 39, 40], such as

constructing a WIMP-based interface by demonstration. In others, demonstration is
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Figure 2.3: In Motion Doodles, features of a sketch are used to set parame-
ters for classes of recognized bipedal characters, as well as their fully
animated motions. (Reproduced with permission from: [55])

used to train the system how to respond to certain kinds of input [62], such as vir-

tual characters responding to virtual puppets controlled in real-time. The strength

of authoring by demonstration is that it is accessible to non-programmers and it

provides a quick means to define classes of program behaviours that respond to

specific triggers. It still however, remains an open problem to reliably have pro-

grams accurately guess the intentions of the user in every case. For instance, situa-

tions with an insufficient number of demonstrated examples could under-constrain

the programming of the desired behaviour, leading to many possible behaviours

that still match the examples given, in addition to opening the possibility that edge

cases of desired behaviours may be entirely omitted.

Storyboarding is another approach to specifying desired behaviour [5, 29, 35]

in created content. An example of this is seen in Figure 2.4. In this technique,

several alternative configurations of the interface are sketched in separate frames.

Individual components of the interface, along with parameters describing these

components and their states are recognized and inferred from the sketch itself.
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Figure 2.4: In SILK, sketching and storyboarding combined with brushing-
and-linking are used to rapidly prototype a user interface. (Reproduced
with permission from: [29])

The behaviour of the interface is specified by mapping sketched components to

other frames of the storyboard. The end result behaves similarly to navigating web

pages by clicking on links. An advantage of storyboarding is that it is accessi-

ble to non-programmers, as all that is required is sketching possible states of the

system and drawing hyperlinks to transition between them. Additionally, story-

boarding provides the assurance that the resulting behaviour of the drawn interface

is predictable. However, storyboarding requires enough canvas space to sketch the

possible frames of behaviour, and the resulting interface is constrained to the states

that exist in the storyboard.

Kinetic sketching is a method for quickly creating content from sketches, pri-

marily rough animations [17]. This is accomplished in part, by allowing sketched

artifacts to be treated as objects that can be manipulated, and by recording the ac-

tions of those objects using direct manipulation, such as dragging a sketched boat

to record its motion. In kinetic sketching, properties of an animation such as ob-

jects, trajectories, and transformations are specified during a recorded animation.

This allows the specification of those parameters to occur at an appropriate point

in the timeline of the animation. This process requires authoring to be specified

iteratively, with each component of the animation defined one at a time, and then

combined to produce the final product which can then be replayed when some

event is triggered. The process of specifying parameters of an animation can be

greatly sped up by pre-programming a library of motions and invoking them us-

ing parsed gestures embedded in a continuously drawn motion path, such as with
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motion doodles [55]. Both of these methods provide a rapid and easy means for

creating interesting animations. However, because the produced animations need

to be defined previously, and because these animations play back the same way as

they are defined, they are best suited for situations where novel behaviour or explo-

ration of the behaviour of virtual models, such as in simple physics demonstrations,

is not heavily required.

Another approach for specifying the behaviour of artifacts is to create mathe-

matical models using sketch, and then use these models to govern the behaviour of

the artifacts. One method that has been explored involves parsing equations written

on a canvas, and then binding select variables of these equations to properties of

drawn artifacts, such as the position of a sketched car, in order to produce anima-

tions [30, 31]. The resulting animations aid in visualizing the system of equations,

as seen in Figure 2.5. Rather than recording animations that are immutable, the

advantage of using a mathematical model is that the equations set up constraints

that the components of the animations follow, allowing for variability in behaviour.

Additionally, setting up a system of equations provides a quick means for speci-

fying certain properties of animations such as the position of artifacts being ani-

mated. However, the approach of parsing written equations works best only if one

is familiar with the mathematical equations needed to define the behaviour being

illustrated.

In this thesis, we partially look at an approach for creating an underlying math-

ematical model for the canvas due to the potential utility afforded from having such

a model. Instead of recording animations directly, using an underlying system of

equations to constrain the behaviour of visual artifacts allows for ideas explored

in visual programming languages to be useful for transforming and interacting

with the underlying constraints themselves, and by extension the artifacts linked

to them.

2.3 Visual Programming Languages
Visual programming languages provide the means to specify programs by primarily

graphical, rather than textual means.

A type of visual programming language called data-flow visual programming
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Figure 2.5: In MathPad2, mathematical models can be sketched and used
to drive animations and other exploratory visualizations. (Reproduced
with permission from: [30])

languages acts on information as though it flows through a series of filters, with

each filter transforming the information a particular way [26]. Traditionally these

programming languages often visually appeared as node-link diagrams, with nodes

representing either inputs, filters, or outputs and links specifying through which

nodes transformed data should flow. These types of visual programming languages

provide a means to both specify, as well as observe intermediate stages in a given

series of transformations without the need to type out much code, if any at all.

Spreadsheets act similarly to data-flow visual programming languages by pro-

viding a visual means to show data and intermediate steps in a series of trans-

formations. A difference is that they hide the filters that link these intermediate

steps from view. A major advantage to note for spreadsheets is that you can easily

specify the function to operate on a range of cells.

17



Figure 2.6: Today’s spreadsheets contain rows and columns of cells that can
contain values and equations.

2.4 Spreadsheets
Spreadsheets are collections of cells and formulas, with the cells are arranged in

a tabular layout. By producing formulaic relationships between cells or groups of

cells, simple applications can be constructed without the need to learn a formal

programming language. Much of the popular spreadsheet programs such as Excel

or Calc are used this way. Figure 2.6 shows an example of a spreadsheet interface.

Extending spreadsheets to drive animations and interactive graphics is an old,

but useful idea [33, 58]. By omitting the tabular layout in the spreadsheet, sys-

tems like NoPumpG [33] were able to provide a free-form layout of cells and

link them to properties of graphics, such as position. Thus, by altering the val-

ues contained in cells via sliders and other methods, they could alter the graphics

being displayed. This resembles dynamic updates in graphs of today’s common

spreadsheet programs, but in a way that is generalized to custom graphics. The

spreadsheet paradigm has also been further extended to allow cells to contain not

only single numbers, but also more complex objects such as visualizations [14].

An example of this is seen in Figure 2.7. By displaying many coordinated views of

the same data and applying different filters or attributes to the cells, it is possible

to visualize different aspects of the data simultaneously.

Combining the speed of creating mathematical models using spreadsheets with

the ease of sketching approximations of scalar functions, the function sketching
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Figure 2.7: Spreadsheets have been augmented to include artifacts in their
cells, such as full visualizations. (Reproduced with permission from:
[14])

component of this thesis provides a tool that quickly authors and interacts with

improvised demonstrations based on scalar functions.

2.5 Visualization Authoring Tools
There are several existing tools which are aimed at simplifying the production of vi-

sualizations. Excel and similar spreadsheet programs take a wizard-based approach

to automatically generate visualizations based on predefined templates. Tableau,

which stems from the Polaris project [53], takes this a step further and allows for

quick visual encodings of data dimensions to visualizations by drag-and-drop to

predefined areas on the screen. Both the approach of wizards, as well as the ap-

proach of tools such as Tableau share the common goal of mapping visualizations

to parameters that specify previously defined visualizations. These tools are best

suited for situations where data can be best represented and communicated by well
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Figure 2.8: Protovis is a declarative Javascript toolkit that regards visualiza-
tions as a combined collection of marks, each with properties such as
position and size specified by data. (Reproduced with permission from:
[7])

known visualizations, such as bar charts. However, in situations where a non-

traditional encoding, or a unique customization is desired due to the nature of the

data, it would be impossible to use predefined visualizations in most cases.

An approach to producing custom visualizations without writing code is to use

some sort of generalized animation software. Programs designed for kids such as

eToys [28] or Phun [19] allow for the creation of virtual robots and simulations,

which can often act as interesting visualizations if constructed cleverly. The for-

mer acts as a visual programming language while the latter is a pen-enabled physics

simulation, both allowing for triggering of events, thereby enabling user-directed

timing if used in a presentation setting. By incorporating more pen-based inter-

action, some other works come even closer to the mark of sketch-oriented design

[15, 48, 49]. The advantage of using more general purpose tools when compared

to packaged visualizations, is that a finer-grained level of control can be achieved

in the final visualization produced, particularly when defining the behaviour of in-

dividual elements. The major disadvantage of this approach, however, is that these

programs often do not easily support the linking of data in many situations and

with many types of data. This leads to the difficulty that any visual encoding of

data dimensions, such as a column in a spreadsheet, would have to be done man-

ually. In other words, it would not be obvious how to create a class of rules and

automatically apply these rules over each dimension of data being visualized, thus

making it unclear how to easily drive a visualization consisting of a group of visual
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artifacts, each representing a dimension of data.

Fortunately, several toolkits exist that allow for the prototyping of visualiza-

tions, also at a finer-grained level compared to prepackaged visualizations. These

toolkits follow the idea that visualizations can be thought of as layouts of grouped,

parameterized visual marks [59]. Protovis [7] is a declarative Javascript toolkit

which allows for a very rich set of visualizations to be specified and programmed

in minutes. A visualization created in Protovis seen in Figure 2.8 demonstrates

visualizations as combined groups of marks. Prefuse [25] and Flare are equivalent

toolkits which allows users to specify data bindings, visual encodings, rendering,

and control of visualizations to enable production of a very wide variety of visual-

izations. Unfortunately, the learning curve of Prefuse and Flare is very steep. Other

toolkits with predefined visualizations also exist [20, 50], however we argue about

the ease of significantly extending these visualizations due to the need to be able to

first understand how they are implemented. There is also another flavour of toolkit

also available to the designer. Processing [1] is another toolkit which lets design-

ers focus on programming visual marks without worrying about any complicated

underlying programming structures (for instance, in contrast to being required to

initialize many non-obvious classes and pointers required by other languages, just

for the purpose of being able to draw something on-screen). Unlike Protovis, this

does not provide shortcut marks with well defined anchors which can be bound to

data or other marks, which leaves the logic of certain visualizations such as stacked

area graphs too difficult for the everyday user. From this, tools become more gen-

eral and more difficult to effectively design visualizations, such as ActionScript,

Flash, OpenGL, etc.

The advantage of using a toolkit to specify visualizations is that many tedious

operations that are common across many types of visualizations such as repre-

senting data, linking data to marks, and so forth, are implemented in advance,

potentially saving the programmer a great deal of time. Furthermore, the level

of customization available to the user is nearly limitless, given enough time. The

disadvantage however, is that knowledge of programming, and competency in the

toolkit being used are both required. In many instances one or both requirements

can provide a steep learning curve that needs to be overcome.

Combining Protovis and sketch, the visualization aspect of this thesis [11] cre-
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ates an easily accessible tool with a flexibility of creating visualizations and a speed

of interaction somewhere in between Tableau and Protovis, without the need to

program code.
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Chapter 3

Function Sketching

If you have ever attended a class such as high school science, economics, math-

ematics, or similar, there is a chance you might have encountered a lesson that

involved learning how to describe some phenomenon with a system of scalar func-

tions. In other words, the item being described could be represented as more than

one mathematical function somehow interconnected, such as demonstrating wave

interference by adding together two sine waves that are out of phase.

Chances are that words alone did not adequately convey a complete under-

standing for most people. For some, writing down a system of equations would

be an approach that could have led to success, particularly if the functions that

comprise the equations are already very familiar. For many others, pictures of the

example functions and how the system affects them would have to be drawn to

adequately convey an understanding of the system being explained.

Figure 3.1 shows an example of functions that were drawn on dry-erase boards

to illustrate motion in one-dimension, amplitude modulation, the additivity of the

Fourier transform, and profit/loss over time for a case study. In each of these cases

several plots were drawn, and in many cases multiple plots contained more than one

plot that was functionally related to another. For instance, in the motion example,

the acceleration plot is the derivative of the velocity plot with respect to time.

Despite the relative speed and ease offered when communicating scalar-function

based systems, manually drawing static functions on media, such as paper or the

board, has several drawbacks. First, it is somewhat time consuming to draw many
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Figure 3.1: A sample of white-board drawings one might find in classes or
meetings that include plots of scalar functions. The plots are used to
qualitatively demonstrate concepts, and multiple plots tend to have more
than one plot that are connected by some functional relationship.

functions, especially functions that relate to one another, as key parts of the vari-

ous plots need to correspond to sections of other plots. Next, those with less-than-

stellar drawing skills may not be able to reproduce the drawings of the functions

they desire to demonstrate. Another drawback is that providing additional exam-

ples of the system require drawing every plot of the input functions, intermediate

steps, and final products. This could be difficult if the system being demonstrated

has many intermediate steps, such as a neural network. Finally, the people being

communicated to, such as students, often cannot explore the ideas being conveyed

using examples of their own when given manually-drawn, static plots. To help

address these problems we utilize a spreadsheet-like interface.

For our purposes, spreadsheets afford several useful properties: Spreadsheets

can let us perform complex calculations. We can visually construct a number of

useful tools without knowing how to program. More interestingly, we can substi-
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tute different data into a previously constructed spreadsheet and see how the results

change without having to reconstruct all of the previous calculations from scratch.

The typical spreadsheet however, has the limitation that each cell contains only

a single number, making operations on entire curves and functions quite cumber-

some. This leads to the question, what if each cell represented a fully-typed scalar

function? This leads to a new interpretation of the spreadsheet whereby the goal is

to now construct full mathematical models when linking cells by equations.

This approach, however, introduces an obstacle that we quickly encounter:

some curves that look very simple can actually have a fairly complex equation.

While our system currently handles one-dimensional scalar functions, for the pur-

pose of illustrating this point let us look at a familiar two-dimensional example.

Take the following curve which has the equation:

(
x2 + y2−1

)3− x2y3 = 0 (3.1)

Although the above equation looks a bit complicated to some, it draws out a

very familiar shape: a “heart” curve [54]. As an illustrative and (hopefully) fun

exercise, we will leave it to the reader to convince yourself of this curve’s heart

shape, and for those who do not already know how to quickly do this, take note of

the effort required to generate a shape from an equation while attempting.

So rather than writing out the equation for every curve we wanted in a cell,

what if we instead, drew out an approximation of the curves and used those ap-

proximations directly? One result is that we would be able to qualitatively see

what effect a system of equations would have on the curves. In many settings,

such as teaching the behaviour of functions in a classroom, the demonstration of

qualitative effects would be adequate. Table 3.1 illustrates this by comparing plots

of functions to their approximate sketches. In this table, the third and sixth rows

are computed results. In other words, rather than being manually sketched, they

are instead calculated from other sketched curves. We can see from this table that

qualitatively speaking, the function sketches behave similarly to the actual function

plots, with the added benefit that the memorization the functions in the left-most

column is not required in order to produce the plots.

By combining the generality and versatility of a spreadsheet with the speed
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Table 3.1: A comparison between functions, their plots, and approximate
sketches of them using our interface. Note that the third and sixth func-
tion sketches are computed from the two above them, and are not manu-
ally drawn.

Formula Plotted Sketched

sin(x)

1
10 sin(20x)

sin(x)+ 1
10 sin(20x)

1√
2πσ2 e−

(x−µ)2

2σ2

8∑
∞
n=1

(−1)n+1 sin(2π f (2n−1)t)
(2n−1)2

π2

8e
− (x−µ)2

2σ2
∑

∞
n=1

(−1)n+1 sin(2π f (2n−1)t)
(2n−1)2√

2π5σ2
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Figure 3.2: A cell actor is used to visually represent a function.

and ease of sketching, we provide a tool to generate models quickly enough to be

used in a live setting. Creating a model is as simple as sketching the component

functions, and linking them together with equations in a similar fashion to a spread-

sheet. For instance, a simple example of this was seen in Section 1.2, where the

sum of two cells is demonstrated. Any cell that makes up a model can be sketched

on to redefine the function in the cell. Any cells that depend on the modified cell

will also be updated accordingly.

3.1 Work-Flow
The general process of building a function-based model consists of defining func-

tions and linking them by equations. The definition functions is facilitated by cell

actors, which act as spreadsheet cells that can be sketched on. Cell actors can be

linked by one or more spreadsheet equations. The input of equations has been im-

plemented via keyboard entry in order to focus on canvas-actor interaction. How-

ever, equation entry could be implemented as purely sketching by incorporating a

handwriting recognition library and a sketching area for equations.

An example of the spreadsheet cell actor is seen in Figure 3.2. Like a spread-

sheet cell, values can be inserted, edited, or linked to a formula involving other

cells. Unlike the typical spreadsheet cell, the cell actors in this canvas contain

functions rather than atomic values.

A cell actor is generally placed on the canvas by two means: using the spread-

sheet mode, whereby all altered cells are automatically placed on the canvas; or by

creating a proto-actor and transforming it into a cell actor. The work-flow example

in this section will use the spreadsheet mode to construct a functional model.

The user can toggle the spreadsheet mode whenever it is desired. In this mode,
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Figure 3.3: The spreadsheet mode arranges cell actors in a spreadsheet lay-
out.

several cell actors are placed into the spreadsheet automatically so the user does not

need to create them manually. Cells are placed and named similar to a spreadsheet,

as seen in Figure 3.3. Interaction in this mode mimics the familiar interaction of a

spreadsheet.

Functions are drawn on to cells, mimicking how one would populate a spread-

sheet with values. To make the spreadsheet more interesting these cells are then

combined by equations. In this example, functions are drawn on two cells in the

spreadsheet as shown in Figure 3.4.

To demonstrate a simple sum of functions, a cell is set to display the sum of

two other cells. This is shown by the reverse-polish-notation (RPN) equation in

Figure 3.5.

Once cells are linked in a model with equations, the cells making up the model

can be modified and the cells containing the results will be updated. This can be

seen in Figure 3.6.

Cells can be repositioned and interacted with in other canvas modes. In the

presentation mode for instance, freely-arranged cells can be drawn in, dynamically

updating other cells linked to it. Annotations, sketches, and other artifacts can
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Figure 3.4: Functions are drawn in cells ss.0.0 and ss.0.1.

Figure 3.5: Cell ss.0.2 is set to be the sum of cells ss.0.0 and ss.0.1.

be placed around the active cells, providing clarification of the artifacts or simply

improving the overall visual appeal. The final result can give the appearance of

an interactive demonstration where novel examples can be improvised during a

presentation, (such as with a prepared, embedded applet), as seen in Figure 3.7.
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Figure 3.6: The function in ss.0.1 is redrawn and the result in ss.0.2 updates
accordingly.

Figure 3.7: Any cell involved in an equation can be shown in the presentation
modes and can be interacted with.

3.2 Implementation
The basic cell actor consists of a drawable area with a visible line graph to plot the

stored function. The function appears as drawn, and the resolution of the discrete

points of the function is limited to pixel resolution. The zero point is located in

the middle of the drawing area, and the horizontal and vertical scale of all basic
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cell actors match one another, allowing for easy qualitative comparisons between

functions. Any visualization that can store data compatible with the basic cell actor

can also act as a cell actor. These extended cell actors may include enhancements

such as horizontal and vertical scaling, alternative representations of the function,

multiple functions per actor, and more.

The scalar functions themselves are implemented as vectors of coordinate val-

ues, with step-wise, linear, or polynomial interpolation used to render the curves

and determine the result of mathematical operations, depending on the specific situ-

ation. We found that this precision of interpolation provided an acceptable balance

between performance and qualitative results of commonly used functional models.

There are several operations supported in the spreadsheet. These make up a

proof-of-concept set, and are far from a complete set that would comprise a fully

functioning spreadsheet. That being said, adding additional operations is an easy

task by design, and can be done by writing classes that implement the operations

interface we have defined internally.

The current allowable operations implemented are:

• addition

• subtraction

• multiplication

• scaling

• division

• convolution

• normalized cross-correlation

• Discrete Fourier Transform (without phase information)

• differentiation

• integration

• smoothing

• square root

• operations on constants
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Equations that bind cells together are internally stored in a list of equations.

All stored equations are in RPN (Reverse-Polish-Notation) form as calculations are

performed trivially, and many other forms of representing equations can be reduced

to RPN. For instance, currently equations can be directly entered in RPN format, or

in traditional infix notation using a limited Shunting Yard algorithm [18] to convert

the equations to RPN.

In addition to the list of equations stored, hash maps are used to index cell de-

pendencies in an equation, in addition to equations dependencies of particular cells.

This allows for constant time lookup of dependencies during any operation that af-

fect multiple cells, such as updates, creating new equations, etc. All atomic cells

with data but no dependencies are also noted. This is to prevent cells from updat-

ing if they depend on an undefined cell in an equation. When a cell is updated, any

cells affected by this change are also updated. Additionally, when entering equa-

tions, invalid equations as well as equations with cycles are blocked from being

processed.

This implementation results in a spreadsheet-like behaviour between drawn

functions, with operations fast enough to update in real time.

3.3 Results
The sketchable spreadsheet described in this chapter can be used in both the spread-

sheet mode, or in an more free-form mode, as seen in Figures 3.8 and 3.9. The

spreadsheet mode allows for construction and manipulation of functions and equa-

tions in its cells, which is appropriate for exploring a new model, concept, or sys-

tem of functions, among other things. The cells can then be arranged in a mode

more appropriate for demonstration. This combined interface can be used to con-

struct many kinds of useful demonstrations.

A sample demonstration illustrating normalized-cross-correlation is shown in

Figure 3.10. In this example, the spreadsheet mode was used to apply normalized

cross-correlation [8, 44] between two cells and display the result in a third cell. The

cells were then re-positioned in canvas mode and some additional ink was drawn

to quickly demonstrate what is roughly happening between the cells. The function

or the kernel can now be drawn on to show the effect this has on the result.
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Figure 3.8: A simple addition of functions in spreadsheet mode.

Figure 3.9: A simple addition of functions in canvas mode.

Figure 3.11 illustrates a more involved demonstration showing a simplified ex-

planation for amplitude modulation, a method used to encode signals onto a carrier

wave as seen in older radios, where a sound signal is carried on a radio wave. In

this setup, both the carrier wave as well as the signal can be drawn in to see how

this affects the final wave.

The next demonstration, which is often introduced in computer vision classes

demonstrates that if you apply normalized-cross-correlation (or convolution) often

enough using the same kernel, you will eventually end up with a Gaussian (i.e.

bell) curve. This is seen in Figure 3.13, in which a student or instructor can draw

in both the function and the kernel, and the final result will be shown. Without

some interactive demonstration, this concept is either accepted at face value by

the students of the class, or attempted to be drawn on a dry-erase board to some
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Figure 3.10: A demonstration in canvas mode of normalized cross-
correlation for signal detection.

Figure 3.11: A demonstration in canvas mode showing amplitude modula-
tion. The center and right image shows the result when a new signal or
carrier are drawn respectively.

confusion.

The final example shown in this section illustrates the relationship between

acceleration, velocity, and position. This can be seen in Figure 3.14. This concept

is often used to demonstrate integration in beginner calculus courses. In an example

class, graph paper was used to construct the curves, resulting in close to an hour

just to produce a handful of examples. Using our interface, many examples can be

constructed in seconds to explore this concept. Also note in this demonstration that

scaling of functions is performed in the equations entered.

These are just a handful of the many kinds of demonstrations that can be con-
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Figure 3.12: A function sketch demonstration showing amplitude modulation
in spreadsheet mode.

Figure 3.13: A demonstration in canvas mode showing that if you apply a
kernel with normalized-cross-correlation repeatedly, you will eventu-
ally end up with a Gaussian. The reverse-polish-notation equations are
shown in this figure. This demo is often shown in introductory com-
puter vision classes.

structed and performed using the sketchable spreadsheet and canvas.
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Figure 3.14: A comparison between acceleration, velocity, and position. This
demonstration is often used to illustrate integration. The equations
used to calculate velocity and position for this function sketch are
shown.

3.4 Discussion
While the mechanism shown in this chapter provides a quick way to create qualita-

tive demonstrations using ODO interaction, it should be noted that it is not intended

for any functions that require precision in its definition, such as chaotic functions,

the reason being two-fold. First, sketching functions by hand is inherently impre-

cise, and any resulting operations on these functions will propagate existing errors

downstream. Second, interpolation within the sketched functions has been imple-

mented with speed in mind, rather than extreme accuracy, in order to support inter-

activity. As a result, although the function shapes produced by our system can be

used to qualitatively demonstrate a concept well within screen-resolution accuracy,

this may not hold in situations that require an accuracy with more precision. For

instance, in equations that require numerous applications of error-magnifying op-

erations such as derivatives, noticeable inaccuracies will be visible in the resulting

plots. To mitigate this error propagation somewhat, users can manually apply the

smoothing operation to help stabilize the effects of these types of error-magnifying

operations.

An additional point worth discussing is that the best practises for automati-

cally scaling graphical representations of functions remains an issue that impacts
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this interface. On one hand, a one-to-one scaling of functions allows for direct,

qualitative comparisons between them. On the other hand, a one-to-one scaling

can quickly make it difficult to represent intermediate results in systems of equa-

tions involving many different scales. Therefore, we have left automatic scaling

as an open problem, noting that scaling can be manually performed in equations

if needed by the user. This allows the user to have full control of the scaling be-

haviour, and allows for quick qualitative comparison between functions, however

at the expense of increased authoring time.

Evaluation is often performed during the construction of a novel interface.

However, formal, structured evaluation of this visual spreadsheet has been avoided

as it could be considered counterproductive in this stage of development [22]. Cur-

rently comparable interfaces such as spreadsheets, functional programming lan-

guages, symbolic manipulation systems, and presentation software, among others,

are at a mature state and a direct comparison could possibly only bring to the sur-

face shortcomings due to a lack of implemented familiar features, such as custom

formatting, context menus, wizards, and much more. Prior to evaluation, these

features will need to be implemented either by programming this interface as a

plug-in to a mature software suite such as LibreOffice, or by surveying the most

commonly used subset of features and including as many as possible to allow test-

ing of a very specific set of use cases. Additionally, the scripting back-end could

be adapted to allow for Wizard-of-Oz testing of a few informative scenarios prior

to this investment of resources. These lie outside the scope of this thesis and have

therefore been left as future work. At a later stage they will be necessary to test the

real-world, long-term viability of this interface.
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Chapter 4

Visualization Sketching

Visualizations are important in presentations as they allow the presenter to quickly

represent concepts being shown in various ways that may be easier to understand to

an audience. Our implementation is a gesture-based WYSIWYG interface for build-

ing improvisational visualizations. We build on top of the Protovis visualization

toolkit [7], while maintaining the on-(drag)-off interaction easily used in presenta-

tion settings. This allows users to quickly build various kinds of visualizations if

needed without having to write code, use confusing wizards, or open bulky external

programs, such as spreadsheets, which may detract from the flow of a presentation.

4.1 Work-Flow
The general process of sketching visualizations involves invoking the appropriate

actors that will help with selecting a data source and parameters for the underlying

scripting language, and linking these to an actor that knows how to render the

final visualization. In this case the data actor and single-mark visualization actor

perform the former tasks, and the compound visualization actor generates the final

visualization.

The presenter begins by drawing on the canvas. All open strokes are inked as

regular strokes while any closed strokes are shown as filled shapes called proto-

actors, seen in Figure 4.1. These proto-actors are converted to various other actors

by drawing gestures inside them. The following steps in this example are each
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Figure 4.1: Drawing strokes and proto-actors.

Figure 4.2: To import data a proto-actor is converted into a data actor which
is then used to open a spreadsheet. The spreadsheet data is displayed as
a series of bar charts.

facilitated by a specialized actor.

To create something more interesting than a drawing the presenter imports data

as seen in Figure 4.2.

The presenter then picks a mark to visually encode the data with. This is shown

in Figures 4.3 and 4.4.

After picking the marks being used to encode the information, the user then

links the information to the marks. This is demonstrated in Figure 4.5.

Once information is linked to the visual marks, these marks are then combined

to form a visualization. This is shown in Figure 4.6.
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Figure 4.3: A gesture converts a proto-object into a visualization, and another
gesture picks the visual mark.

Figure 4.4: The user can pick from several marks to visually encode infor-
mation.

4.2 Implementation
There are several elements that comprise our system and add various functionality

to it. Each of these components allow the user to either quickly view simple vi-

sualizations, or to author more complex visualizations. A quick summary of these

elements is seen in Figure 4.7.

The canvas is a fixed-size area that can be sketched on. In the current early

implementation, it is simply a napkin-sized, sketchable area in a website which

responds to mouse-down, mouse-up, and mouse-dragged events. The back end

Figure 4.5: The information can be linked to a visual mark by brushing and
linking, in other words drawing a stroke from the information to the
visual mark.

40



Figure 4.6: Marks are combined in a compound visualization.

Figure 4.7: Elements of the visualization sketching system, demonstrated in
its own interface.

renders the canvas and visual actors in several layers to optimize for speed during

various required re-draws. However, to the user this appears as a single canvas that

the user can simply doodle on.

A stroke is a single set of points drawn by the user on the canvas between

a mouse-down and a mouse-up event. This translates to a stroke simply being a

single line or curve the user has drawn. Depending on context, strokes can be

interpreted as simple inking, proto-actors, gestures, links, and so forth.

When the user draws a closed stroke, the stroke becomes transformed into a

proto-actor. Proto-actors can then be transformed into other elements by drawing

a gesture inside of the proto-actor. In the context of a drawn web page with a
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visualization, the proto-actor provides a means of specifying the location and size

the user might want. For instance, if the user wanted to create a visualization

location (25, 20) with a size of around 100x150, they could simply draw a box of

that size with the top-left corner at (25, 20) creating a new proto-actor, then draw a

gesture inside the proto-actor to create a visualization.

Basic gestures are interpreted from strokes by converting the stroke informa-

tion into a string of directions (from a character set of 9 directions), and then using

the Levenshtein distance [32] to compare the stroke with predefined gestures. Al-

though the gesture vocabulary can be customized to suit the user, we will use an

example set of gestures in the following paragraphs for the sake of concreteness.

A file opener is a tool that allows the user to specify the path of a file to open.

This tool can be invoked via an “O” gesture drawn in a proto-actor. Once a file is

chosen, this widget is transformed into a data actor which gives access to the data

in the file. The file opener was programmed for convenience of implementation

and in future versions added support for sketching will be included to complement

this tool.

For the scope of this project it is assumed that all information visualized is

tabular data with an evenly-spaced independent variable. This can be provided by

any compatible canvas actor such as the data actor.

The data actor provides the first real visualization of the information, and is

created by opening a data file using the file opener. Often times, if the user is

simply curious about what their data ‘looks’ like, this tool may be all the user will

need. Each row in the visualization represents a dimension in the parsed file. In

essence, this actor performs like a scented widget to allow selection of a dimension

of data [60].

Single-mark visualization actors are visualizations that contain a single mark

for each data item, such as a line graph, bar chart, area graph and scatter plot. These

can be invoked by drawing a ‘V’ gesture inside a proto-actor. The position and size

of the visualization are determined by the respective properties of the proto-actor.

Additional gestures can change the visualization’s mark after the visualization has

been invoked. For instance, an ‘A’ gesture selects the area mark, used for area

charts. The ‘W’ gesture selects wedges, used in making pie charts and similar

visualizations with a radial layout. The ‘D’ gesture selects dots, commonly used
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in scatter plots. A ‘B’ gesture causes bars to be selected as the desired visual

encoding. Finally, a ‘L’ gesture selects lines as the desired visual encoding.

The single-mark visualization displays a default visualization to let the user

know what it will look like. A brown border around the visualization indicates this

behaviour. When any data is linked to the visualization the border changes color to

indicate this.

In order to link information to the single-mark visualization, the user draws a

stroke starting in any actor containing compatible data such as the data actor, to

any point in the visualization itself.

When brushing and linking data from the data actor to the single-mark visu-

alization, in order to specify which data dimension the user wants to visualize the

starting point of the link must lie within the mini visualization of that dimension in

the data actor.

The compound visualization is a tool to compose visualizations consisting of

more than one mark, such as stacked area graphs, stacked bar charts, and much

more. In order to create a compound visualization the user draws a ‘star’ gesture

inside a proto-actor, similar to other actors.

To then add a mark to the visualization, the user simply draws a line from the

single-mark visualization to the compound visualization. The direction of entry

determines the direction the mark will be stacked on previously placed marks. The

location of the stroke’s end point within the compound visualization determines

which previous mark the new mark will be stacked on.

Each subsequent interaction take users through a more and more detailed look

of their data. In the early stages, the user can simply see a quick, automatically

generated visualization of their data. Often this may be all the user needs. Fol-

lowing this, the single-mark visualization allows an even closer look at individual

data dimensions, offering a variety of visual marks the user can use, and through

parameter specification such as size (and in effect, aspect ratio) the user can see dif-

ferent aspects of the same data dimension. The final stage allows the user to view a

dimension’s relationship to data in other dimensions by composing visualizations

containing more than one mark.

On the front-end of the compound visualization actor one uses ODO interac-

tion to combine marks to build visualizations. On the back-end, this actor maps
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interactions on the front-end and data provided by sources mapped to marks to a

generated Protovis-compatible script.

In order to do this, all current marks linked to this actor, their associated data,

and anchors to other linked marks are kept track of. The remaining two pieces of

information that needs to be specified for each group of marks are: which direc-

tional anchors should be used to position a group of marks relative to an existing

group of marks, and which existing group of marks should a group of marks be

placed on. Actually, these two requirements can be reduced to simply specifying

which existing anchor in the compound visualization should a new mark be placed

on, but conceptually it is easier to split the task into the two tasks of specifying

which anchor, and which group of marks to place new marks on.

Since Protovis provides every mark in a visualization with a top, bottom, left,

right, and a center anchor, the compound visualization actor needs to support in-

teraction for specifying which existing anchor to place a group of marks on. For

this, we have experimented with making the direction of entry to the actor when

linking a mark mapped to the top, bottom, and similar anchors of existing marks

in the visualization. Center anchors are ignored in this case, however it would be

easy to include them.

In order to determine which existing mark to stack the new mark on, the com-

pound visualization is partitioned into sections that one can drop a mark on to. If

no marks exist, the entire actor has its own set of anchors that can be used to stack

new marks. Each section represents an existing mark that has already been stacked

on to a previous mark. For instance, if there exist two marks in a stacked bar chart,

the bottom half of the compound visualization would correspond to the first mark

stacked in this visualization, and the other half corresponding to the other mark.

With three marks the compound visualization is partitioned into thirds. Because

a visualization with many marks (more than the pixel density of a visualization)

would be overly complicated, given the domain of this system, partitioning of the

compound visualization should not enter into impossible sub-pixel partitions, prac-

tically speaking.

The necessary information needed to create a compound visualization can be

stored in a table where each row consists of marks, their types, attributes, a pointer

to data, a destination anchor, and various other customizable attributes. Construct-
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ing the final visualization requires iterating through the rows of this table and gen-

erating a script that can be parsed by the declarative visualization language.

4.3 Results
There are a wide variety of visualizations that can be dreamed up and authored

using the currently implemented subset of interactions. We will show a few ex-

amples in this section to help jump-start the imagination. The first example, seen

in Figure 4.8 shows a visualization to show page views off a sample website. In

this case, a quick-and-dirty set of graphics were created to compare the number

of users who visited the survey page and the number of visitors on the front page

during the week. There are two visualizations seen on this sketch, a stacked bar

chart and a layered bar chart. These visualizations were both created by using the

bar mark to visually encode the respective data, and they both differ by stacking.

This visualization was created on a small form-factor smaller than the size of a

napkin, in this case on a tablet’s browser in a coffee shop where right-clicking was

unavailable.

In order to create this visualization, spreadsheet data is imported using a data

actor. Two single-mark visualizations are then created and bar marks were selected.

Columns of data from the spreadsheet are brushed and linked to encode them both

as bars. Two compound visualizations are created. In the top visualization, the bars

are stacked on the bottom of the visualization to layer the visual elements. In the

bottom visualization, the bars are instead stacked on one another. This visualization

sketch, including all inked annotations and doodles took under thirty seconds to

create.

To further illustrate visualizations that can be authored by visually encoding

data and stacking marks, several created on the canvas are seen in Figure 4.9. The

left shows the result of stacking area marks on both top and bottom anchors of ex-

isting marks. This provides the behaviour of a stacked area chart. To demonstrate

that this behaviour is useful outside of the scope that a simple Excel wizard can

provide, an example of a more complicated visualization that utilize the behaviour

of stacking area marks is ThemeRiver [9, 23]. The middle visualization shown

demonstrates superposition of a bar chart and an area chart. This is done by stack-
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Figure 4.8: A sample napkin visualization charting one week of page views
to a website. By stacking bars on each other versus stacking them on the
bottom of the visualization we create two common types of bar-based
visualizations.

ing marks on the same anchor. The example on the right demonstrates a stacked

bar chart created.

These three visualizations were created using a similar procedure as the exam-

ple with page view data. The difference is in the marks selected to visually encode

the information, and the method of stacking the marks. For the left-most mirrored

area chart, marks are stacked on top of one another, on both the top and the bottom.

The middle mixed visualization demonstrates that visual marks can be combined.

In this case, the area and bar marks are stacked on the bottom of the visualization.

The stacked bar chart on the right is created the same way as the stacked bar chart

in page view example. These three visualizations were created in under a minute

total.

Finally, to help illustrate that providing some of the versatility of a toolkit to

non-expert users can be useful, unconventional but potentially useful visualizations

can also be created. In Figure 4.10, an unconventional stacked bar chart is created
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Figure 4.9: A mirrored, stacked area chart, a bar chart superimposed on an
area char, and a stacked area chart created by combining area marks or
bar marks in a compound visualization.

to compare the fuel usage of two valves in a facility. In this case, the result that is

of interest is whether or not a valve’s flow of fuel, in addition to the baseline fuel

usage, is above a threshold. In a spreadsheet, this would be done by either adding

the baseline column to each individual valve’s column, then charting the result

in a layered bar chart or two separate charts. In this visualization, the baseline

fuel usage is stacked on the bottom of the chart, and the fuel usage for valves 1

and 2 are stacked on top of the baseline. This lets us see some interesting things.

First, we see what the baseline fuel flow looks like over each day, something that

would be hidden in the summed spreadsheet method. Second, we can see that

on some days a single valve exceeds the threshold, whereas on others both do.

We can see which valves they are, and which days this occurs quickly, without

having to compare multiple charts. Finally, we can compare the trending fuel usage

between valves and the baseline, among other things. Although this visualization

is unconventional, it still provides some utility. This visualization sketch including

all inked annotations was created in under thirty seconds.

All of these visualizations and many more can be created using only ODO inter-

action, which can be further extended in the future by redundantly mapping other

conventional interactions like context menus.

4.4 Discussion
While the gamut of visualizations that can be created using canvas-only interac-

tions is smaller when compared to when coding using a scripting language, this

gap can be quickly narrowed by providing more interactions that map to addi-
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Figure 4.10: An unconventional visualization shows a comparison of total
fuel usage between two monitored valves at a factory. Valve bars (seen
in green and orange) are stacked on top of a baseline bar chart (seen in
blue).

tional functionality of the language itself. Although this canvas is an early step, it

demonstrates that just like WYSIWYG editors and visual programming languages,

finer-grained authoring of visualizations can also be achieved using only ODO in-

teractions, enabling the improvisation of them.

An open problem which is left as future work is the determination of a good

set of default behaviour for visualization formatting. This includes issues such as

ideal color of marks, shapes of marks, sizes of all visual artifacts, scaling along

axes, inclusion of tick marks, labelling, and so forth. Although the capability to

customize these properties can be included, because this interface may target non-

experts, subtle perceptual issues such as the effect of aspect ratio on the perception

of trends in graphs, may not be known [16, 24]. Thus, automatic handling of these

subtleties should be provided by a more complete future version. While surveying

this issue to completion is outside the scope of this thesis, the good news is that

existing toolkits such as Prefuse or Protovis [7, 25] already provide a good set of

default behaviours which can be built upon.

Another topic to discuss is the future evaluation of this interface. At this stage

48



of development, evaluation has been limited to several rounds of informal feed-

back from a group of expert users. While a structured, formal evaluation will be

necessary to fully validate any claims of efficiency at a later stage, we would like

to suggest that any evaluation at this state of development would only bring atten-

tion to familiar features that, for the purpose of properly focusing our resources,

were intentionally excluded in the development of this interface [22]. This would

therefore not be as helpful as evaluating a tool with these features included. For

instance, a common question asked by early users regarded the notable absence of

context menus, whereas a conscious decision was made to see how far we could go

using gestures alone before extending our interface with well-established features.

There are several other aspects of this interface that fall into future work for

evaluation of this interface. The first factor that will need to be determined, at

least roughly, is the functional coverage that pen-based interaction can have over

the original Protovis toolkit. In other words, how much of the scripting capabil-

ity can we map to gestures and ink before requiring coding. This could be done

by building on top of results previously found by works in visual programming

languages. The next factor that should be investigated would be the ease of learn-

ing the concept of building visualizations by strategically encoding marks prior to

mapping them to a data set. In other words, investigate how easily this concept of

visual marks can be adopted and applied by non-expert users. Finally, familiar fea-

tures in established programs should be included in a more mature product. Then

a more comprehensive comparison between established tools and our interface can

be conducted in order to test claims of increased usability, ease of learning, and

efficiency, in addition to garnering of useful feedback.
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Chapter 5

Conclusions

5.1 Conclusion
The variety of live situations that active diagrams can enhance are on the rise. For

instance, presentations, something many people perform daily, can use interactive

demonstrations to aid in conveying ideas more effectively when compared with

static drawings. Because the kinds of human-computer interactions that can be

performed in these situations can be limited, input methods that can be more widely

generalized are useful to build on.

In this thesis a proof-of-concept canvas was shown that allows for on-(drag)-

off interaction to be used to create and interact with function-based models and

visualizations, bringing current systems a step closer to accommodating the im-

provisational use of them.

A visual mapping to a declarative scripting language for visualizations was

used in order to provide finer-grained control in a proof-of-concept WYSIWYG vi-

sualization authoring tool. A sketch-capable spreadsheet was created to facilitate

the creation of functional models.

5.2 Discussion and Future Work
There is an explosion of devices appearing as this thesis is being written that opens

up a variety of interaction modalities. Tablets are making a come-back and catch-
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ing on with the general public, multi-touch is the new craze, and even bodily ges-

tures are being explored with stereoscopic, video-based game interfaces such as

Microsoft’s Kinect. Although it was tempting to try and work with some of these

interfaces, we chose to try and interaction method that, in our opinion, was quite

generalizable and hopefully easily extended to current technologies. That being

said, it would be quite fun to try and map some of these new interaction methods

to the functions of this canvas now that the framework has been laid out.

Our system assumes that it is worthwhile to support ODO (on-(drag)-off) inter-

action and focuses more on facilitating rough, qualitative, improvisational demon-

strations rather than finalized and precise analysis. We believe that these can be

widely generalized to more complicated systems. For instance, any device that

accepts input from a tracking device such as a mouse, camera, tablet or a touch-

screen can already support this type of interaction. Existing software technology

such as virtual keyboards and sketch recognition can then build on this technology

to provide even more interaction options.

While the system we presented can already be adapted for use in various set-

tings, there still remains a number of tasks that are worth mentioning as future

work.

A formal evaluation has been left as future work as one would be harmful

at this stage of prototyping [22]. During informal feedback sessions with expert

users, the issue of the lack of familiar features was a common theme that crept

up. We suggest that, similar to Greenberg’s suggestion, development was at too

early a stage to be compared to current, well-established tools without highlighting

very common, yet time-consuming features to implement. We feel that this re-

implementation of common features is necessary, as without testing the interactions

presented in this thesis integrated with existing interactions we are used to, it is

hard to see how well our would integrate with them. It should be noted, however,

that most feedback of our interface itself were quite positive. Any future version

of the system could benefit greatly from being implemented as a plug-in to an

established office software suite such as LibreOffice, as this would remove any

distraction in work-flow caused by a lack of common features, and instead bring

forward any genuine design flaws that should be improved upon in the interface

itself. Fortunately, when that time comes, guidelines for testing interfaces such as
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ours exist, (e.g., [10, 36, 37, 41]), and we will be drawing from them to guide our

planned future evaluation.

It should be noted that the interactions explored in this thesis were also meant

to be memorized by the presenter, thus giving the appearance of fluidity to an au-

dience watching. Similar to keyboard shortcuts, these interactions are not meant

to be learned on-the-fly and therefore just like shortcuts, a system would not be

complete without a way to visually search for the function itself, such as menus or

palettes. An interesting problem would be to determine if a subset of interactions

and hints could be used that provide a good middle-ground between the two ex-

tremes while appearing to be fluid, or whether it would instead simply be worth it

to implement both extremes and provide training for those interested in shortcuts.

In future versions, although the systems demonstrated in this thesis can be

extended by reimplementing conventional interactions, such as context menus, to

make interaction easier and more obvious, it should still be noted that with solely

ODO interactions alone, there is definitely room for improvement. For instance, an

issue that arises is that the system needs to be learned, rather than discovered by

the user. More specifically, affordance of the different interactions is not obvious,

and the visibility of how the different parts of the system interact could be further

improved [42]. In other words, the user will not be able to easily figure out how to

use these gestural interactions without some prior instruction. The flip-side to the

hidden nature of ODO interaction as mentioned earlier, is that when learned, visual

distractions do not get in the way of work-flow (such as attention-grabbing pop-up

windows), and demonstrations remain fluid and focused as extraneous artifacts do

not appear on screen.

Finally, while this project began with implementing a generalized presentation

scripting language, it soon became apparent that the scope may be wider than an-

ticipated. It would be interesting to revisit this endeavour as we feel that interesting

systems can be made quickly when a good, well-established scripting back-end is

created first. Such is the case with the visualization authoring sub-system of this

project. A good portion of the canvas is scripted, however, so expanding this to

the entire gamut of the canvas functions will be a fun next step. Once completed,

the task of creating interesting presentation interactions will then be simplified to

writing modules to generate scripting code from novel input devices.
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